Iterative Solvers for a Spectral Galerkin Approach to Elliptic Partial Differential Equations with Fuzzy Coefficients

نویسندگان

  • Samuel Corveleyn
  • Eveline Rosseel
  • Stefan Vandewalle
چکیده

Mathematical models of physical systems often contain parameters with an imprecisely known and uncertain character. It is quite common to represent these parameters by means of random variables. Numerous methods have been developed to compute accurate approximations to solutions of equations with such parameters. This approach, however, may not be entirely justified when the uncertainty is due to vagueness or incomplete knowledge. For such cases, alternative uncertainty representations using tools from imprecise probability theory have been suggested. Among those, the fuzzy representation is probably most popular. In this paper, we consider numerical methods for solving partial differential equations with fuzzy coefficients. We demonstrate that spectral expansion methods, quite common in the random variable approach, can also be used effectively for solving fuzzy equations. We motivate the use of Chebyshev polynomials in the spectral representation and apply a Galerkin projection to convert the fuzzy problem into a high-dimensional deterministic one. Two preconditioners are proposed in order to efficiently solve the resulting high-dimensional algebraic system. A Fourier analysis demonstrates that both preconditioners yield a convergence rate that is independent of the spatial resolution and independent of the number of fuzzy variables and the polynomial order. The practical applicability of the algorithm is illustrated by means of two numerical experiments: a fuzzy heat transfer problem on an L-shaped domain and a fuzzy elasticity problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients

Efficient Spectral-Galerkin algorithms are developed to solve multi-dimensional fractional elliptic equations with variable coefficients in conserved form as well as non-conserved form. These algorithms are extensions of the spectral-Galerkin algorithms for usual elliptic PDEs developed in [24]. More precisely, for separable FPDEs, we construct a direct method by using a matrix diagonalization ...

متن کامل

An Extension of the Legendre-Galerkin Method for Solving Sixth-Order Differential Equations with Variable Polynomial Coefficients

We extend the application of Legendre-Galerkin algorithms for sixth-order elliptic problems with constant coefficients to sixth-order elliptic equations with variable polynomial coefficients. The complexities of the algorithm are O(N) operations for a one-dimensional domain with N − 5 unknowns. An efficient and accurate direct solution for algorithms based on the LegendreGalerkin approximations...

متن کامل

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013